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SUMMARY

The flow of particulate two-phase flow mixtures occur in several components of solid fuel combustion
systems, such as the pressurised fluidised bed combustors (PFBC) and suspension-fired coal boilers. A
detailed understanding of the mixture characteristics in the conveying component can aid in refining and
optimising its design. In this study, the flow of an isothermal, dilute two-phase particulate mixture has
been examined in a high curvature duct, which can be representative of that transporting the gas–solid
mixture from the hot clean-up section to the gas turbine combustor in a PFBC plant. The numerical
study has been approached by utilising the Eulerian–Lagrangian methodology for describing the
characteristics of the fluid and particulate phases. By assuming that the mixture is dilute and the particles
are spherical, the governing particle momentum equations have been solved with appropriately prescribed
boundary conditions. Turbulence effects on the particle dispersion were represented by a statistical model
that accounts for both the turbulent eddy lifetime and the particle transit time scales. For the turbulent
flow condition examined it was observed that mixtures with small particle diameters had low interphase
slip velocities and low impaction probability with the pipe walls. Increasing the particle diameters (\50
mm) resulted in higher interphase slip velocities and, as expected, their impaction probability with the pipe
walls was significantly increased. The particle dispersion is significant for the smaller sizes, whereas the
larger particles are relatively insensitive to the gas turbulence. The main particle impaction region, and
locations most prone to erosion damage, is estimated to be within an outer duct length of two to six times
the duct diameter, when the duct radius of curvature to the duct diameter ratio is equal to unity.
Copyright © 1999 John Wiley & Sons, Ltd.
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1. INTRODUCTION

There are a wide range of engineering components in the advanced generations of coal-fired
plant, such as the pressurised fluidised bed combustors (PFBC), and in the standard pulverised
coal suspension-fired systems, in which particulate flow occur. For example, in PFBC systems
the hot gases laden with particulates from the coal combustor normally pass through a
clean-up stage, where high temperature cyclones remove most of the particulates before the gas
is directed to the gas turbine combustor. The ingress of particles into the gas turbine working
environment is normally to be avoided in order to minimise the deterioration of the turbine
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blades both structurally and aerodynamically. As a significant amount of solid material needs
to be pneumatically transported into and out of the major components of these plants, erosion
can be a significant problem in the conveying ducts and in the components themselves. Such
conveying ducts also exist between the mills and the burners of conventional pulverised
coal-fired boilers. Here, they usually comprise of several curved sections, bends, vertical-to-
horizontal transition sections and flow splitters (riffle boxes), which are also prone to erosion
damage. To minimise erosion damage in such components, a detailed knowledge of the
particulate flow behaviour can aid in refining and optimising their design.

Both laminar and turbulent single-phase flows in curved pipelines of square cross-sections
have previously been examined in detail by Humphrey et al. [1,2] using hot-wire anemometry.
Using the same flow configuration as Humphrey et al. [2], Platfoot and Fletcher [3] have
computed both laminar and turbulent flows in the curved ducts using a ‘non-elliptic’ flow
solver. A reasonable agreement between the predicted and experimentally obtained local
velocities was reported. For flows consisting of a gas–solids mixture, Tsuji et al. [4], Lee and
Durst [5] and Maeda et al. [6] determined experimentally the local velocities and turbulence
intensities in a vertical straight circular duct for several conditions of particle sizes and
concentrations. They reported that high concentrations and large particle sizes tends to
dampen turbulence and can significantly alter the velocity profiles in the duct. Tsuji and
Morikawa [7] have also conducted similar experimental studies for gas–solids flow in a
horizontal circular pipe. For other configurations, such as pipe bends and tube bundles, the
characteristics of the particulate two-phase flow and their erosion potential have been reported
by Pourahmadi and Humphrey [8], Mason and Smith [9], Humphrey [10], Schuh et al. [11] and
Beacher et al. [12]. More recently Tu and Fletcher [13] have computed gas–solids flow in a
square sectioned 90° bend and compared their predictions with the laser Doppler anemometry
(LDV) experimental data of Kliafas and Holt [14]. The computational method employed by
Tu and Flectcher [13] was a Eulerian–Eulerian scheme for both the fluid and particulate
phases, and good agreement of the local gas and particle velocities was reported for the limited
experimental data available.

In the present numerical study, the flow of a dilute gas–solid mixture was initially examined
in a vertical pipe and subsequently in a strongly curved, large aspect ratio rectangular duct.
The Eulerian–Lagrangian methodology was employed and several assumptions were embodied
in the algorithm regarding the particle motions. The effect of fluid turbulence on the
particulate phase was represented by a statistical model, which accounts for both the turbulent
eddy lifetime and the particle transit time scales.

2. MATHEMATICAL MODELLING

In order to obtain a detailed history of the particle velocities and trajectories within a flow
field, it is necessary to know the detailed fluid flow field within the given geometry and how
the two phases interact with each other. Within the Eulerian–Lagrangian methodology, the
interaction between the phases is represented by the incorporation of the particle momentum
influx–efflux terms into the governing conservation equations of the gas phase, Migdal and
Agosta [15]. This methodology is generally referred to as the particle source-in-cell method
(PSI-Cell), Crowe et al. [16].

This momentum coupling between the phases for gas–solid mixtures is relevant when the
particulate suspension is significant and if it modifies the fluid flow characteristics due to its
presence in the flow. For dilute suspensions, which are characterised by mass loading ratios
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ofB1, it is appropriate to assume that the influence of the particulate phase on the carrier
fluid is minimal. The experimental data of Tsuji et al. [4] and Lee and Durst [5] confirm this
assumption. Tsuji et al. [4] and Lee and Durst [5] have, however, also shown that in mixtures
with high mass loadings (\1) and large particle diameters (\200 mm), the fluid flow field can
be significantly perturbed by the presence of the particles. More recently, Pan and Banerjee
[17] indicate from a direct numerical simulation (DNS) of ‘large’ particles in an open channel,
low Reynolds number flow, that even at low concentration (:10−4), the presence of these
‘large’ particles enhances turbulence production. This was particularly observed in the near-
wall region, where a large enhancement in the Reynolds stresses was predicted. For ‘small’
particles, which are smaller than the smallest turbulent length scales, Elghobashi and Truesdell
[18] have also shown via a DNS method, that their presence in a low Reynolds number
decaying homogenous turbulent field, can increase the turbulent dissipation. In both the latter
studies, the ‘two-way coupling’ between the phases was assumed.

In the present study, high Reynolds number (\104) flows are studied and the considered
mixtures have mass loading ratios B1.0, with 80% of the particulate concentration consisting
of particles B200 mm. The coupling of the phases through their momentum interactions has
not been modelled and only ‘one-way coupling’ has been assumed.

2.1. Fluid phase

The fluid phase characteristics are represented by the steady state, time-averaged, incom-
pressible, conservation equations of mass and momentum. For flows in non-orthogonal
curvilinear co-ordinates, these conservation equations can be represented in tensor notation in
terms of the Cartesian velocity, u, by (Peric et al. [19], Rodi et al. [20], Majumdar et al. [21]);
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Figure 1 shows the above geometrical relationships for one of the computational cell faces (i.e.
the east cell face, e), which can be easily determined from the co-ordinates of the quadrilateral
non-orthogonal cell vertices.

The above conservation equations (1) and (2) are solved in conjunction with the two-
equation k–o model of turbulence (Jones and Launder [22]), which assumes that the gas
turbulence is locally isotropic. The kinetic energy of turbulence, k, and its dissipation, o, in the
k–o model are described by

Turbulence energy, k
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Figure 1. Geometrical representations of a non-orthogonal computational cell.
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Table I. Empirical constant used in the k–o turbulence model (Launder and
Spalding [23])

Cm C1 C2 sk soConstant

0.09 1.44 1.92 1.0 1.3Value

Fm=
1
J

meff

so

(o

(jn

bm
n .

The effective viscosity meff in Equations (2), (7) and (8) is determined from (Jones and
Launder [22])

meff=m+mT, (9)

where the turbulent viscosity is defined by

mT=Cmr
k2

o
. (10)

The empirical constants that are contained within Equations (7), (8) and (10) are given by
Table I, as recommended by Launder and Spalding [23].

In order to solve the above conservation equations, they are discretised using the finite
volume method. This results in a quasi-linear equation for each control volume cell, which is
of the form

apuip+%
m

amui,m=Su, (11)

where the subscript m represents the eight neighbouring nodes of node P (i.e. e, w, n, s, ne, nw,
se, sw as shown in Figure 1). The coefficient a contains contributions from both the convection
and diffusion fluxes, the exact formulations of which are described by Peric et al. [19], and Su

contains the pressure force component in the direction of the velocity component ui. The
velocities ui,m are the values of the velocity component ui at the computational points residing
in the neighbouring control volumes.

In Equation (11) the convection terms contained in the coefficient a are discretised using the
linear upwind differencing scheme, Patankar [24], which is second-order-accurate. And, the
diffusion terms in the coefficient a are expressed by the central difference approximations,
which is also second-order-accurate, Patankar [24] and Gosman et al. [25]. The cross-derivative
terms that result in the diffusion components due to the non-orthogonal grids are discretised
using linear interpolation.

The pressure field, which is represented by the source terms in Equation (11), is solved using
the momentum interpolation method of Rhie and Chow [26], in conjunction with the SIMPLE
pressure-correction algorithm of Patankar and Spalding [27]. The use of this practice and the
equations obtained are based on those outlined by Peric [19,28] and Mumjumar et al. [21].

Finally, the solution of Equation (11), which consists of a large number of non-linear
equations and which requires an iterative procedure, is obtained by using the strongly implicit
procedure of Stone [29]. In this iterative solution procedure, underrelaxation is employed to
allow for stable convergence of the equations. Convergence for the set of equations that result
from Equation (11) is determined by monitoring the change in the normalised sum of the
residuals between iterations, Patankar [24], and also by monitoring the change in the values
of every variable (e.g. velocities, pressure, k and o) at prescribed locations within the
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computational domain. These prescribed locations are strategically located within the compu-
tational domain and generally correspond to areas where the variables to be solved are likely
to vary the most, e.g. within a flow recirculation zone. For the cases examined in the present
study, it was found that by employing underrelaxation factors of 0.2 for pressure and 0.75 for
the velocities and k and o, convergence can be achieved within 500 iterations, when the
convergence criteria for the normalised sum of the residuals is prescribed to be 10−4.

2.2. Particulate phase

The dilute gas–solids two-phase mixture considered in this study is characterised by a
volume fraction of B10−3, a mass loading ratio B1 and a density ratio rp/r$103. Under
these assumptions it is sufficiently accurate to assume that the particles are non-interacting
(Humphrey [10] and Clift et al. [30]). That is, the dynamics of any one particle are not
influenced by the presence of neighbouring particles (either directly, through collisions, or
indirectly, through the perturbed fluid field). Ash particles from the hot gas clean-up section
of a PFBC plant or pulverised coal particles being transported to the coal burners in a coal
fired boiler would normally satisfy the density ratio conditions, where rp/r is typically of the
order of 103. The volume fractions and mass loading ratios in such systems also tend to be of
the order of 10−4 and 0.3 respectively (Lawn [31]), which ensures that all the conditions for
non-interacting particles are satisfied.

The instantaneous velocity of a single spherical particle of diameter dp can then be
determined from the conservation equation of particle momentum, i.e.

mp

dVpi

dt
=

1
2

CDrAp(Vfi−Vpi)�V( f−V( p�+mpgi, (12)

assuming that the particles are spherical, non-interacting and that there are negligible addi-
tional forces except for those due to drag and gravity. Due to the high ratio of the particle to
gas densities, other forces, such as the apparent mass, pressure gradient, Basset and the two lift
forces due to fluid shearing and particle rotation, are small.

The particle drag coefficient, CD, for rigid spherical particles in Equation (12) is determined
from Clift et al. [30], where

CD=
24
Re

(1+0.15Re0.687) for 0BReB103 (13)

and the Reynolds number is defined as

Re=rdp�V( f−V( p�/m, (14)

where
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(Uf−Up)2+ (Vf−Vp)2 .

The position of the particle within the computational domain can be described by its rate of
change with respect to time, i.e.

dxpi

dt
=Vpi. (15)

The above Equations (12)–(15) describe the instantaneous velocities and positions of the
particle within the flow field and the solution of these equations can be obtained by using a
number of numerical methods (e.g. Runge–Kutta, Euler, etc.). In the present study they have
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been solved by direct integration. The required time steps in Equations (12) and (15) are
determined from the shorter of the two times required by the particle to traverse the width or
length of the cell at its current velocity in the respective directions, i.e.

t=min
�Dx

Up

,
Dy
Vp

�
a,

where a is a prescribed factor. Depending on the cell aspect ratio, this prescribed factor
determines the ‘coarseness’ of the time step. The effect of several values of the prescribed
factors on the predicted particle velocities and trajectories were examined in order to ascertain
time step independent solutions. For the two cases examined in this study, a factor of 1

3 for cell
aspect ratios B2 indicated that the predicted velocities and trajectories were reasonably time
step independent.

2.3. Turbulent dispersion of the particulate phase

In order to account for the influence of gas turbulence on the particle dispersion, the ‘time
scale’ model of Dukowicz [32], Gosman and Ioannides [33] was employed. In this approach,
the instantaneous fluid velocity in Equation (12) is decomposed into its mean and fluctuating
component via

Vfi=V( fi+si
(2k/3), (16)

where the second term on the right-hand-side of Equation (16) is the fluctuating gas velocity,
which is assumed to have a Gaussian probability distribution, and si is a normally distributed
random number with a zero mean and unit variance. As the particle traverses a turbulent eddy,
the interaction time of this randomly sampled gas fluctuating velocity component, with the
particle is limited by the lifetime of the turbulent eddy, te, or the transit time for the particle
to traverse the eddy, tr, i.e.

tint=min (te, tr), (17)

where te= le/�6fi � and the eddy length scale le=Cm3/4k3/2/o. The transit time tr can be
determined from the linearised form of the particle momentum equation, Gosman and
Ioannides [33], i.e.

tr= −t ln
�

1−
le

(t �V( f−V( p�)
�

, (18)

where the particle relaxation time is t=rpdp
2/18mf, with f=CDRe/24. After each interaction

between the particle and the turbulent eddies, a new fluctuation is assumed as the particle
traverses the flow field.

2.4. Boundary conditions

For the gas phase, the velocities and turbulence properties are specified at the inlet domain
and a zero gradient condition is specified at the outlet to represent fully developed conditions.
At the solid walls, computations of the boundary layer and its representation is evaluated from
the ‘log-law’ wall relationships, using the wall functions approach of Launder and Spalding
[23].

For the particulate phase, the inlet velocities are statistically prescribed, with the instanta-
neous inlet velocity being composed of a mean and a randomly sampled fluctuating compo-
nent. When the particles approach the wall boundary, the ‘stopping distance’ model of
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Friedlander and Johnstone [34] has been adopted. Particles approaching a wall penetrate its
boundary layer and subsequently strike the wall only if they possess a ‘stopping distance’,
stretching from the edge of the boundary layer to the wall, which is greater than the boundary
layer thickness. In this study it is assumed that the laminar sublayer extends to a normal
dimensionless distance y+ =11.63 from the wall, and the normal particle velocity at this
distance is its instantaneous normal value. As all the computational cells are quadrilateral
elements, the normal distance from the wall is evaluated from a knowledge of the co-ordinates
of the wall cell vertices. The stopping distance is then evaluated from the particle instantaneous
normal velocity at y+ =11.63 and its relaxation time assuming that the laminar sublayer is
stagnant. Those particles attaining y+B11.63 are trapped and move with the sublayer, while
particles with y+\11.63 penetrate the sublayer and strike the wall surface. The striking
particles then rebound from the wall subject to a normal and tangential coefficient of
restitution. Referring to Figure 2, the rebound velocities are calculated by first determining the
normal and tangential particle velocities from

Vt=Up cos u+Vp sin u, (19)

Vn= −Up sin u+Vp cos u. (20)

The rebound velocity components normal and tangential to the wall are then calculated using
appropriate restitution coefficients, according to

V %n= −enVn, (21)

V %t=etVt. (22)

Finally, the rebound velocity in the original co-ordinate system is computed from

U %p=V %t cos u−V %n sin u, (23)

V %p=V %t sin u+V %n cos u. (24)

Figure 2. Particle boundary conditions at a solid wall.
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Figure 3. Transformation of a computational cell from global to local co-ordinates.

In the absence of sufficient experimental data on the distribution of the restitution
coefficients with respect to the particle impaction and rebound angles to the wall and the
particle/wall material combinations, the data of Brauer [35] have been utilised. For the present
study, it has been assumed that the normal and tangential restitution coefficients are 0.9 and
0.8 respectively.

2.5. Particle tracking

As the computational grid employed in the present study is non-orthogonal, accurate
tracking of the particles within the computational domain is required. In this study particle
tracking is initiated by initially ‘sweeping’ the computational domain and the particle positions
compared with the minimum and maximum positions of the cell vertices of the ‘swept’ cell. If
the particle co-ordinates fall within this range, then it may reside in that cell or any one of its
eight surrounding neighbouring cells. In order to precisely determine the cell location, the
global co-ordinates of the cell are temporarily transformed into a local co-ordinate system, as
shown by Figure 3, by expressing the global co-ordinates of the transformed cell in terms of
their nodal values via

x°p= %
4

k=1

fk(j, h)xk, (25)

y°p= %
4

k=1

fk(j, h)yk, (26)

where fk is the quadrilateral cell shape function defined by (Akin [36])

fk(j, h)=
1
4

(1+j°pjk)(1+h°phk), (27)

with k=1–4 representing the four nodal values of the cell. The Jacobian relating the global
and local co-ordinates is then determined from

J=
� (fk

((j°p)j

n
[xkj ] (28)

and the inverse of this Jacobian will contain the derivatives

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 31: 579–600 (1999)



S. NAIK AND I.G. BRYDEN588

(j

(x
,
(j

(y
,
(h

(x
,
(h

(y
.

The particle position in the local co-ordinates can then be computed from

jp=j°p+
(j

(x
(xp−x°p)+

(j

(y
(yp−y°p), (29)

hp=h°p+
(h

(x
(xp−x°p)+

(h

(y
(yp−y°p). (30)

Assuming an initial value of j°p and h°p, which should lie within the quadrilateral cell (e.g. 0, 0),
Equations (29) and (30) can be solved iteratively. This will then produce an accurate
transformation of the particle global co-ordinates xp, yp, into the local co-ordinate system. If
the local co-ordinates from Equations (29) and (30) lie within the transformed rectangular cell,
then the cell of the computational domain containing the particle is located, otherwise solution
is shifted to the next neighbouring cell. It has been found in practice, that less than ten
iterations are required to achieve convergence and the whole computational domain can be
‘sweeped’ very quickly.

3. RESULTS AND DISCUSSIONS

3.1. Gas–solids flow in a 6ertical pipe

Initially, the vertically upward flow of a dilute gas–solid mixture was simulated in a vertical
pipe and compared with the LDV experimental data of Tsuji et al. [4]. For these predictions,
the axisymmetric form of the gas and particulate transport equations (1)–(3) were employed.
The vertical pipe considered was of internal diameter 30.5 mm and subjected to a air Reynolds
number of 3.8×104 and a mean air inlet velocity of 18.9 m s−1. The particulate phase
consisted of 200 mm diameter spherical particles with a density 1020 kg m−3 and the mass
loading for the mixture was 1.0. At the inlet the particles were assumed to be uniformly
distributed with a inlet velocity of 16.2 m s−1, which was obtained by taking the average of the
particle velocity profile determined experimentally by Tsuji et al. [4].

Figure 4 shows the gas and particulate flow mean velocities and turbulent intensities at fully
developed flow conditions 75 pipe diameters from the inlet. It is evident that there is generally
a good agreement between the predicted and experimental data. Although at the wall the
predicted air turbulence intensities are slightly underpredicted, they show the general trend of
high values near the wall shear layer and lower values in the bulk of the flow.

For the particulate phase, the computed mean velocities also agree favourably with the
experimental data, although they are slightly overpredicted across the whole pipe radius. As
the particle size (200 mm) considered is large, there is a large interphase slip velocity between
the gas and particulate phases particularly in the central core of the pipe. Towards the wall the
experimental results of Tsuji et al. indicate that the particles have higher velocities than the gas.
Lee and Durst [5] also observed this in their studies and indicated that this was due to the
shear induced lift force acting on the particle, which they did not find when the particle
diameters are less than 200 mm. Figure 4 also shows a comparison between the predicted and
experimental gas turbulence intensities. In this figure only the predicted particle turbulent
intensities are shown due to lack of experimental data. It is evident from Figure 4 that the
particle turbulence intensities lag the gas phase by a factor greater than 5. Although large
particles are relatively insensitive to the fluid turbulence, Tsuji et al. indicate that at high mass
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loading (\1.0), the effect of increasing particle sizes from 200 mm to 3 mm increases the fluid
turbulence, and that a much flatter gas velocity distribution ensues across the pipe diameter.

3.2. Gas–solid flow in a high cur6ature duct

In order to examine the isothermal flow of a dilute gas–solid mixture in a high curvature
duct, a horizontal to vertical large aspect ratio rectangular duct, which is connected by a tight
90° bend, was utilised. The geometry of the duct is indicated by Figure 5. By considering a
duct with an aspect ratio �1, it has been assumed that the influence of secondary flows on
the mean gas and particulate flow characteristics is small. Pourahmadi and Humprey [8], who
examined gas–solids flow in a duct with a radius of curvature to duct diameter ratio of 12,
indicate that this is a reasonable assumption for the prediction of engineering flows. Recently,
Tu and Fletcher [13], who have used the experimental data of Kliafas and Holt [14] in their
numerical study, have also shown that for a duct with a radius of curvature to duct diameter
ratio of 1.76, the influence of the velocity displacement that results from the secondary flows
in curved ducts has a negligible effect on the particle mean velocities when they are 50 mm or
100 mm in size.

In the present study, the gas flow field in the duct, of width 0.27 m, was computed at a
Reynolds of 2×105 with a mean inlet gas velocity of 15 m s−1. The radius of curvature of the
duct bend was 0.27 m. At the inlet a non-uniform gas velocity and turbulence intensity profile
was prescribed, with an assumed distribution equal to the predicted fully developed pipe flow
conditions shown by Figure 4. The computations for the gas phase were initially performed
with four non-uniform grid distributions, namely 12×60, 20×80, 24×102 and 35×160. In
all cases the cell aspect ratios were kept B2 in the vicinity and within the curved section, and
the streamwise grid lines were aligned parallel to anticipated fluid streamlines in order to
minimise numerical diffussion, Patankar [24]. Additionally, a fine mesh was prescribed near the
two duct walls and within the 90° bend. The convergence criteria (sum of the normalised
residuals) for all the computed variables was maintained at 10−4. It was found that the

Figure 4. Gas and particle mean velocities and turbulence intensities in a vertical pipe.
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Figure 5. Geometry of the curved duct and the employed computational grid.

maximum difference in the streamwise and transverse velocity profiles between the 24×102
and the 35×160 grids was less than 1.2%, and hence in order to maintain computational
efficiency, the 24×102 grid was subsequently used for all the simulations.

For the particulate phase, the mean inlet velocities were 12.9, 13.6, 14.2 and 14.8 m s−1 for
the 200, 100, 50 and 10 mm particle sizes respectively. The inlet velocity distribution for the 200
mm was assumed to have the same profile to that indicated by Figure 4 corresponding to fully
developed conditions. Velocity distributions similar to that shown by Figure 4 were also
computed for the 100, 50 and 10 mm particles (not shown) and their fully developed profiles
were used as initial inlet conditions to the duct. The density of the particles was 1020 kg m−3

and the mass loading was assumed to be 0.05. At each inlet starting location, the particulate
stream consisted of the following particle sizes and fractions: 10 mm (25%), 50 mm (50%), 100
mm (20%) and 200 mm (5%). In order to maintain statistical significance, several tens of
thousand particles of each size fraction were injected at each starting location of the inlet
boundary.

3.3. Particle trajectories

Figure 6 shows some of the several thousands of the computed trajectories of the 10, 50, 100
and 200 mm particle sizes. They are shown separately to keep the clarity of the illustration. As
expected, the smaller particles (10 mm) tend to follow the fluid streamlines in most of the duct,
with some of the particles being influenced by the centrifuging effect in the bend. As the
particle size is increased to 50 mm, this centrifuging effect becomes more prominent, with only
some of the particles flowing near the inner wall of the vertical section of the pipe. For both
of these smaller particles sizes, Figure 6 illustrates that due to the influence of the fluid
turbulence, all the particles injected from a point source at the inlet, begin to disperse
transversely within the horizontal pipe section immediately after injection.
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When the particle size is increased to 100 and 200 mm, their inertia markedly influences the
particle trajectory paths. On entering the bend, very few of these particles respond to the fluid
streamlines and their inertia carries them towards the outer wall of the duct. The majority of
these large particles after striking the outer wall, become re-entrained into the bulk flow. For
the 200 mm particles, the frequency of particle impacts with the bend outer wall is quite
significant and after rebound, some of these particles are projected on a collision trajectory
with the opposite inner wall much further downstream. These trajectories result mainly due to
their higher inertia. Qualitatively similar observations have also been reported by Pourahmadi
and Humphrey [8], Tu and Fletcher [13] and Kliafas and Holt [14]. The larger particles are also
relatively insensitive to the turbulent eddies. As Figure 6 shows, the transverse particle
dispersion after injection within the horizontal duct section, is significantly less compared to
that predicted for the smaller particles.

Figure 6. Particle trajectories in curved duct for (a) 10 mm, (b) 50 mm, (c) 100 mm, and (d) 200 mm particle sizes.
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3.4. Velocity distributions

The mean velocities of all the particle sizes are indicated by Figures 7 and 8 in conjunction
with the mean absolute gas velocities. As the particles approach the curved section (at u=0°),
the smaller particles have low slip velocities, and in the bulk of the flow their mean velocities
are similar to the absolute mean gas velocity. The larger particles, have lower horizontal
velocities particularly near the inner wall of the curved duct whereas at the outer wall, their
velocities are higher than that of the gas phase. The vertical velocity components at the inlet
to the curved section for all the particles sizes (Figure 8) are very small as the flow is
predominately horizontal.

As the flow progresses further into the curved section (u=30°), the higher gas velocities at
the inner duct wall are evident from Figure 7. The larger particles in this section have a higher
horizontal velocity component than the carrier fluid particularly towards the outer wall
section. Unlike the smaller particles, the motion of the larger particles is dominated by their
inertia and hence they deviate considerably from the gas streamlines within the curved section.
This can be observed from Figures 7 and 8, which show that they have a high horizontal
velocity component but a relatively smaller magnitude of the vertical velocity.

At (u=60°), the horizontal velocity of the smaller particles within the whole duct section
decreases further with a corresponding increase in the vertical mean velocities as they follow
the gas streamlines. The larger particles in contrast, however, deviate from the fluid streamlines
considerably and hence still retain a higher horizontal mean velocity with an increasing vertical
component. At this section of the channel, a clustering of the larger particles is evident near
the outer wall which is largely due to the centrifuging effects. Additionally, for the 200 mm
particles, Figures 7 and 8 show that the mean velocities are only present in the central bulk of
the flow that correspond to the particle positions after they have rebounded from the outer
wall. At the bend outlet (u=90°), the mean horizontal velocities of all the particle sizes
decrease, with the vertical velocity component dominating the mean motion of the particles.

3.5. Turbulence characteristics

The turbulence intensities of the gas and particulate phases within the transverse and
longitudinal planes of the duct geometry are illustrated in Figure 9. Both the gas and
particulate phase intensities have been normalised with respect to the mean gas inlet velocity.

At the inlet to the bend (u=0°), the gas phase has the characteristic turbulence intensity
profile of pipe flow. High values are predicted near the walls where the greatest fluid shearing
exist, with lower and almost constant values being attained in the bulk of the central core. Tu
and Fletcher [13] show similar distributions in the gas-phase turbulence intensities, but indicate
that the k–o model tends to overpredict the intensities, particularly downstream from the bend
inlet and at the inner wall of the duct. For the particulate phase, Figure 9 shows that the
smaller 10 mm particles have the same trend in the turbulence intensity profiles as the gas phase
except they have lower magnitudes. The larger particles also show similar profiles to the gas
phase although their magnitudes are also lower than the smallest particles considered. Tsuji et
al. [4] and Durst et al. [5] have, however, shown that if the gas–solid mixture mass loading is
high (\1), the influence of particle sizes of 200 mm and less tend to dampen the gas
turbulence, whereas when they are greater than 200 mm, their presence increases the gas
turbulence and creates a much flatter gas velocity profile. In the present study it has been
assumed that the gas–solid mixture is very dilute and hence the influence of the particulate
phase on the gas phase is small, which is collaborated by the experimental data of Tsuji et al.
[4].
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Figure 10. Impaction probabilities of all the particle sizes with the walls of the curved duct.

As the flow progresses through the curved duct section, high gas turbulence intensities
are obtained at the inner wall, which decay towards the duct centreline. For the particulate
phase, particles of all sizes also have similar distributions, except that their magnitudes are
much lower. Towards the bend outlet (u=90°), the larger particle sizes are much more
concentrated at the duct centreline and the outer wall due to the centrifuging effect, and
here they still retain a turbulence intensity distribution profile similar to the gas phase.

3.6. Particle impaction

In the present study, the erosion process is not modelled, but the flow of the particles
and their impaction characteristics have been computed. The distribution of the particle
impactions with the duct walls are indicated by Figure 10, where particle impaction has
been defined as a impaction probability parameter of the particle size fraction At the outer
wall of the curved section, it is evident that the heavier particles strike the outer wall first
with the majority of the smaller sizes striking further downstream. For the larger particle
sizes, the impactions are dominated by their inertia, and after impaction they rebound from
the wall and become re-entrained into the main flow. Some of the smaller 10 mm particles
also strike the outer wall, but further downstream from the bend outlet. This impaction is
largely due to the eddy impaction process, where particles can penetrate the boundary layer
only if they possess a ‘stopping distance’ that is greater than the boundary layer thickness.
On this duct outer wall, the main impaction regime for the all the particle sizes are
predicted to be within a outer duct length of two to six times the duct diameter.

At the inner wall, particle impaction occurs near the vertical outlet section. This occurs
only with the 200 mm particles that have rebounded from the outer wall within the curved
section of the duct (see Figure 6). The trend in the probability of particle impactions at the
outer wall in Figure 10 are in qualitative agreement with the erosion rates observed by
Mason and Smith [9], who show that erosion rates initially increase with u and reaches a
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maximum at about 20–30°, whereafter it reduces sharply. From predicted particle velocities,
mass fluxes, angles of impact and wall mechanical properties, Pourahmadi and Humphrey
[8] also showed that with Finnie’s [37] wear model, qualitatively similar trends were ob-
tained in the relative erosion rates as observed by Mason and Smith [9].

4. CONCLUSIONS

The flow of a gas–solid mixture has been numerically predicted in two geometrical configu-
rations utilising the Eulerian–Lagrangian methodology. By assuming that the particulate
phase is dilute and that the particle to gas density ratios are much greater than unity, the
governing momentum equations for the particulate phase have been solved with appropri-
ately prescribed boundary conditions. The influence of fluid turbulence on particle disper-
sion was represented by a statistical model that accounts for both the turbulent eddy
lifetime and the particle transit time scale.

Initially, a dilute gas–solids flow in a vertical duct was simulated. Comparisons of the
predicted gas and particulate phase mean velocities and turbulent intensities with experi-
mental LDV data of Tusiji et al. [4] show a reasonably good agreement. The flow of an
isothermal dilute gas–solid mixture consisting of several particle sizes was subsequently
simulated in a strongly curved duct. For the smaller particles, the computed mean velocities
indicate that their interslip velocities are small and their particle trajectories generally
coincide with the fluid streamlines. The dispersion of the smaller particles is also quite
significant within the duct. The larger particles, however, have much higher interslip
velocities and strongly deviate from the fluid streamlines, which is as a consequence of
their inertia. As expected, their dispersion is small in comparison with the smaller particle
sizes, due to their insensitivity to the turbulent eddies. The frequency of the particles
striking the duct walls particularly the outer wall of the curved duct section, increases as
the particle sizes increase. At the outer wall, the main impaction zone for the all the
particle sizes is predicted to be within an outer duct length of two to six times the duct
diameter.

APPENDIX A. NOMENCLATURE

coefficients in Equation (11)a
Ap projected area of particle (m2)

particle drag coefficientCD

constantCm

dp diameter of particle (m)
duct width (m)D
gravity vector (m s−2)gi

I f
p, Ip

p gas and particle turbulence intensities, 6 f
2/Uc, 6p

2/Uc

gas and particle turbulence intensities, 6 f
2/Uo, 6p

2/UoIf, Ip

Jacobian of co-ordinate transformationJ
k kinetic energy of turbulence (m2 s−2)

eddy length scale (m)le
inner and outer longitudinal length of duct (m)Li, Lo
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mass of particle (kg)mp

pressure (N m−2)P
Re particle Reynolds number

distance between inner and outer walls of pipe (m)r
source term in Equation (11)S

t time (s)
interaction, eddy and transit times (s)tint, te, tr

gas velocity vector (m s−1)u
U mean axial gas or particle velocity in pipe (m s−1)

centreline gas velocity in pipe (m s−1)Uc

absolute gas velocity (m s−1)Uabs

Uo mean gas velocity at duct inlet (m s−1)
mean particle velocities in the x- and y-directions (m s−1)Up, Vp

instantaneous particle velocity vector (m s−1)Vpi

Vfi instantaneous gas velocity vector (m s−1)
fluctuating gas and particle velocity vector (m s−1)6fi, 6pi

absolute gas and particle fluctuating velocities (m s−1)6̄f, 6̄p
V( fi mean gas velocity vector (m s−1)

Cartesian co-ordinates (m)x, y
co-ordinate vector of the particle (m)xpi

y+ dimensionless normal distance from wall

Greek letters

a prescribed time step factor
co-factors of co-ordinate transformationb

Kronecker’s deltad

o dissipation of fluid turbulent kinetic energy (m2 s−3)
shape function for quadrilateral elementf

fluid dynamic viscosity (kg m−1 s−1)m

meff effective viscosity (kg m−1 s−1)
turbulent viscosity (kg m−1 s−1)mT

inclination of wall surface (°)u

r density of the fluid (kg m−3)
density of the particle (kg m−3)rp

Prandtl/Schmidt number for oso

sk Prandtl/Schmidt number for k
normally distributed random numbersi

particle response time (s)t

j, h local non-orthogonal co-ordinates
length and width of a computational cell (m)Dx, Dy

Subscripts

i, j co-ordinate directions or tensor indices
l, m, n tensor indices
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